標題: | Deep ultraviolet laser direct write for patterning sol-gel InGaZnO semiconducting micro/nanowires and improving field-effect mobility |
作者: | Lin, Hung-Cheng Stehlin, Fabrice Soppera, Olivier Zan, Hsiao-Wen Li, Chang-Hung Wieder, Fernand Ponche, Arnaud Berling, Dominique Yeh, Bo-Hung Wang, Kuan-Hsun 光電工程學系 光電工程研究所 Department of Photonics Institute of EO Enginerring |
公開日期: | 27-May-2015 |
摘要: | Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the requirements for direct photopatterning and for achieving semi-conducting properties with thermal annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV irradiation step results in photolysis and a partial condensation of the inorganic network that freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in solar cell, display, flexible electronics, and biomedical sensors. |
URI: | http://dx.doi.org/10.1038/srep10490 http://hdl.handle.net/11536/124802 |
ISSN: | 2045-2322 |
DOI: | 10.1038/srep10490 |
期刊: | SCIENTIFIC REPORTS |
Volume: | 5 |
起始頁: | 0 |
結束頁: | 0 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.