标题: 超高解析度频域光学同调断层扫瞄术-使用混合有机溶液
Ultrahigh resolution spectral-domain optical coherence tomography with mixed organic dye solutions
作者: 詹仲皓
Chan, Chung-Hao
詹明哲
Chan, Ming-Che
影像与生医光电研究所
关键字: 可见光;光学同调断层扫描;宽频光源;频域光学同调断层扫描;有机溶液;超高解析度;纵向解析度;低同调光源;visible light;optical coherence tomography;broadband light source;spectral domain OCT;organic solution;ultrahigh resolution;longitudinal resolution;low coherenct light source
公开日期: 2015
摘要: 利用有机发光二极体材料的技术发展衍生出低成本及高量子效率的显示器已经成为了未来的趋势。在这个研究中,使用了有机发光二极体的萤光材料当作基底并展示了一个简单的光源应用于超高解析度频域光学同调断层扫瞄仪,由445nm半导体雷射当激发源激发两种不同频段混合的有机材料。在空气中轴向解析度最高可达到1.7μm。
  光学同调断层扫瞄术(Optical Coherence Tomography, OCT),它本质上是一种低同调干涉仪,使部分透明样品作二维或三维的非侵入式扫瞄。在时域OCT(TD-OCT)系统,以获取深度信息(A-Scan)中,参考臂的长度必须被机械式地改变,这限制了其成像速度。近年来,由于先进的傅立叶域OCT(FD-OCT),包括扫频源OCT(SS-OCT)和频域OCT(SD-OCT)的广泛使用,对于成像速度有了很大的提升,因为在参考臂中除去机械扫瞄仪,故能以每秒数百帧的速度扫瞄。在SS-OCT系统中,基于MEMS的扫频源或傅立叶域锁模雷射可以提供更多的A-Scan速率(超过100千赫),在OCT扫瞄中产生的运动伪影将大大降低。目前商用扫瞄的CCD可以达到线速100千赫,等于SD-OCT系统的A-Scan速度。因此,无论是SS-OCT或SD-OCT系统都能够提供比TD-OCT更快的成像速度。
  在OCT的解析度中,透过公式(于2-3介绍)可得知解析度(resolution)正比于1/∆λ,其中∆λ为光源的半高宽(Full width at half maximum, FWHM),所以我们利用把不同波段的有机染料(Organic dyes)染料混合、激发出宽频的光源提供给OCT当作光源。
  将两两接近的低波段和高波段的有机溶液混合,激发出比原来更宽频的光源是本研究主要的卖点,而有机溶液混合有以下优点:1. 低成本、2. 容易制作、3. ∆λ可藉由不同波段的溶液混合来增加。
Technological developments of organic-LED (OLED) materials have ushered in the new era in display with low costs and high quantum efficiencies. In this work, the potential use of LED phosphors has been evaluated and demonstrated as a simple light source for ultrahigh-resolution spectral-domain optical coherence tomography (SD-OCT). Excited by a 445 nm diode laser, broadband spontaneous emission from three LED phosphors were generated in the visible regime. The best axial resolution was 1.7μm in air and corresponding 3D ultrahigh resolution SD-OCT imaging was performed with the proposed simple and broadband light source.
  Optical coherence tomography (OCT), which is inherently a low-coherence interferometer, enables three-dimensional (3D) noninvasive biopsy of partially transparent samples. For future OCT applications, the imaging acquisition speed and resolution are two key issues. The imaging speed is determined by the scanning mechanism. In a time-domain OCT (TD-OCT) system, to acquire a depth profile (A-scan), the length of the reference arm has to be mechanically changed, which limits the imaging speed. Recently, advanced by Fourier-domain OCT (FD-OCT) including swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT), the imaging speed has been greatly improved to hundreds of frames per second by the removal of mechanical scanners in the reference arm. Furthermore, FD-OCT shows superior imaging speed and system sensitivity than those of TD-OCT systems. In SSOCT systems, a MEMS-based swept source or a Fourier domain mode-locked laser can provide an A-scan rate of more than 100 kHz, enabling motion artifacts during OCT scanning to be greatly reduced. In contrast, the imaging speed of SD-OCT system is determined by a high-speed line-scan CCD, which is employed as a detection mechanism. Currently, commercial line-scan CCDs can achieve a line rate of ~100 kHz, equal to the A-scan rate of the SDOCT system.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070158225
http://hdl.handle.net/11536/126495
显示于类别:Thesis