標題: | 圖的度數對之研究 The degree pairs of a grpah |
作者: | 黃苓芸 Huang, Ling-Yun 翁志文 Weng, Chih-Wen 應用數學系所 |
關鍵字: | 圖;鄰接矩陣;拉普拉斯矩陣;度數;平均二度數;擬k正則;Graph;adjacency matrix;Laplacian matrix;degree;average 2-degree;pseudo k-regular |
公開日期: | 2015 |
摘要: | 簡單圖G上一點v的平均二度數定義為與v相鄰之點的度數平均。度數列和平均二度數列在最大拉普拉斯特徵值上界的應用,已有許多研究成果。若G中所有點的平均二度數皆為k,則G稱為擬k正則圖。在此論文中,我們證明若G為擬k正則圖,則k是整數;進而找出所有擬正則樹。我們也考慮了當G的最大度數為k^2-k的情形,並給出一些基本的結果。最後,我們對於擬3正則圖給出了更多的結果。並且刻畫出所有十個點之內非正則的擬3正則圖。 Let v be a vertex in a simple graph G. The average 2-degree of v is the average of degrees of vertices adjacent to v. The applications of the degree and average 2-degree sequences on the upper bounds for the maximum eigenvalue of Laplacian matrix of a graph is studied by many authors. The graph G is called pseudo k-regular if each vertex in G has average 2-degree k. We prove that if G is pseudo k-regular then k is integral. Moreover, all pseudo regular trees are given in this thesis. We also consider the case when the maximum degree of G is k2 |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070252209 http://hdl.handle.net/11536/126644 |
Appears in Collections: | Thesis |