完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, CYen_US
dc.contributor.authorLin, KHen_US
dc.contributor.authorShih, CWen_US
dc.date.accessioned2014-12-08T15:17:36Z-
dc.date.available2014-12-08T15:17:36Z-
dc.date.issued2006en_US
dc.identifier.issn0036-1399en_US
dc.identifier.urihttp://hdl.handle.net/11536/12771-
dc.identifier.urihttp://dx.doi.org/10.1137/050632440en_US
dc.description.abstractStable stationary solutions correspond to memory capacity in the application of associative memory for neural networks. In this presentation, existence of multiple stable stationary solutions for Hopfield-type neural networks with delay and without delay is investigated. Basins of attraction for these stationary solutions are also estimated. Such a scenario of dynamics is established through formulating parameter conditions based on a geometrical setting. The present theory is demonstrated by two numerical simulations on the Hopfield neural networks with delays.en_US
dc.language.isoen_USen_US
dc.subjectneural networken_US
dc.subjectmultistabilityen_US
dc.subjectdelay equationsen_US
dc.titleMultistability in recurrent neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/050632440en_US
dc.identifier.journalSIAM JOURNAL ON APPLIED MATHEMATICSen_US
dc.citation.volume66en_US
dc.citation.issue4en_US
dc.citation.spage1301en_US
dc.citation.epage1320en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000238324300010-
dc.citation.woscount69-
顯示於類別:期刊論文


文件中的檔案:

  1. 000238324300010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。