完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Ching-Changen_US
dc.contributor.authorChuang, Yi-Jiunen_US
dc.contributor.authorSun, Wen-Hsienen_US
dc.contributor.authorCheng, Chiehen_US
dc.contributor.authorChen, Yu-Tzuen_US
dc.contributor.authorChen, Zhi-Longen_US
dc.contributor.authorChien, Chao-Hsinen_US
dc.contributor.authorKo, Fu-Hsiangen_US
dc.date.accessioned2015-12-02T02:59:31Z-
dc.date.available2015-12-02T02:59:31Z-
dc.date.issued2015-09-01en_US
dc.identifier.issn0167-9317en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mee.2015.04.013en_US
dc.identifier.urihttp://hdl.handle.net/11536/128299-
dc.description.abstractRecently, the evolution of photovoltaic cells in together with flexible electronics rapidly grows up so as to satisfy the flexibility and elasticity needs. Therefore, it will be a breakthrough impact if it is able to develop flexible single-crystalline photovoltaic cells which are fabricated with traditional procedure and provide highly electrical properties as well. This study aims to fabricate the flexible solar photovoltaic device with practical and reproducible method. Generally, the flexible solar photovoltaic is manufactured on the 30 gm-thickness single-crystalline silicon chip by chemical etching process. Versatile design on the flexible device can enhance light trapping effect. The surface texturization and antireflection layer deposition successfully minimize the reflectivity losses from the incident light. In addition, the developed devices under concave bending morphology demonstrates better operating performance than convex and flat configurations. As to the concave bending type, the significant improvement of power conversion efficiency (129% better than flat type, and 161% better than convex type) is observed from a large device current, which is related to the contribution of light trapping enhancement. In combination of all optimal conditions, the flexible device exhibits conversion efficiency up to 13.8%. The development of novel flexible solar photovoltaics with the excellent mechanical flexibility, low silicon material consumption and low fabrication cost demonstrates the potential capability for future solar cells. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectWet etchingen_US
dc.subjectSingle-crystalline silicon solar cellen_US
dc.subjectFlexibleen_US
dc.subjectOptimal surface morphologyen_US
dc.subjectUltrathinen_US
dc.titleUltrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mee.2015.04.013en_US
dc.identifier.journalMICROELECTRONIC ENGINEERINGen_US
dc.citation.volume145en_US
dc.citation.spage128en_US
dc.citation.epage132en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department材料科學與工程學系奈米科技碩博班zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentGraduate Program of Nanotechnology , Department of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000362152200026en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文