Full metadata record
DC FieldValueLanguage
dc.contributor.author李智明en_US
dc.contributor.author萬文隆en_US
dc.contributor.authorChih-Ming Leeen_US
dc.contributor.authorWen-Lung Wanen_US
dc.date.accessioned2016-01-29T02:47:17Z-
dc.date.available2016-01-29T02:47:17Z-
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/11536/128980-
dc.description.abstract需求預測對報童問題決策者十分重要,因為商品無法儲存至下期再販售。實務上,決策者常須在預算限制內選擇不同需求預測方法既而得到多個預測值,再加以組合。本文發展出一個存貨模型,幫助決策者以不等加權方式組合多個預測值來改善預測精確度。而最佳加權值是經由最小化組合預測變異數得來。本文發現兩不相關之預測值其加權值隨其變異數增加而遞減,因此當兩不相關之預測值在比較時,應、選擇變異數較小之預測值優先組合。理論上,最佳組合可以完全搜尋演算法找到。但當被組合預測值個數過多時,完全搜尋演算法就變得沒有效率。於是本文提出向前搜尋演算法、向後搜尋演算法和相關搜尋演算法來解決。zh_TW
dc.description.abstractDemand forecasting is important for the decision maker facing a newsboy problem as goods cannot be carried over to be sold in the following period. In this paper, we develop a model to assist the decision maker using an unequally weighted method in combining forecasts to improve forecast accuracy. The optimal weights are decided by minimizing the variance of combined forecasts. We find that the optimal weights of uncorrelated forecasts decrease with their variances. When two uncorrelated forecasts are considered, one should select the forecast with smaller variance to combine with current forecasts in hand. Theoretically, the best combination of forecasts can be found by a complete search algorithm. We also propose three algorithms: a forward algorithm, a backward algorithm, and a correlated search algorithm to save computational time when the number of forecasts to be considered is large.en_US
dc.language.isozh_TWzh_TW
dc.subject報童問題zh_TW
dc.subject需求預測zh_TW
dc.subject搜尋演算法zh_TW
dc.subjectNewsboy problemzh_TW
dc.subjectDemand forecastingzh_TW
dc.subjectSearch algorithmzh_TW
dc.titleCombining Demand Forecasts in a Newsboy Problem Using an Unequally Weighted Methodzh_TW
dc.title報童問題中以不等加權方式組合需求預測值en_US
dc.identifier.journal交大管理學報zh_TW
dc.identifier.journalChiao Da Mangement Reviewen_US
dc.citation.volume1en_US
dc.citation.spage177en_US
dc.citation.epage199en_US
dc.contributor.departmentDepartment of Management Scienceen_US
dc.contributor.department管理科學學系zh_TW
Appears in Collections:Chiao Da Mangement Review


Files in This Item:

  1. 201406177199.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.