完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiang, Wen-Ien_US
dc.contributor.authorPeng, Chun-Yenen_US
dc.contributor.authorHuang, Rongen_US
dc.contributor.authorKuo, Wei-Chengen_US
dc.contributor.authorHuang, Yen-Chinen_US
dc.contributor.authorAdamo, Carolinaen_US
dc.contributor.authorChen, Yi-Chunen_US
dc.contributor.authorChang, Lien_US
dc.contributor.authorJuang, Jenh-Yihen_US
dc.contributor.authorSchlom, Darrel G.en_US
dc.contributor.authorChu, Ying-Haoen_US
dc.date.accessioned2016-03-28T00:04:27Z-
dc.date.available2016-03-28T00:04:27Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c5nr07033cen_US
dc.identifier.urihttp://hdl.handle.net/11536/129706-
dc.description.abstractThe successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process.en_US
dc.language.isoen_USen_US
dc.titleEpitaxial integration of a nanoscale BiFeO3 phase boundary with siliconen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/c5nr07033cen_US
dc.identifier.journalNANOSCALEen_US
dc.citation.spage1322en_US
dc.citation.epage1326en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000368040200010en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文