完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, CKen_US
dc.contributor.authorHsin, HCen_US
dc.contributor.authorLin, SFen_US
dc.date.accessioned2014-12-08T15:18:00Z-
dc.date.available2014-12-08T15:18:00Z-
dc.date.issued2005-12-01en_US
dc.identifier.issn1350-245Xen_US
dc.identifier.urihttp://dx.doi.org/10.1049/ip-vis:20050004en_US
dc.identifier.urihttp://hdl.handle.net/11536/13019-
dc.description.abstractA hybrid coding system that uses a combination of set partition in hierarchical trees (SPIHT) and vector quantisation (VQ) for image compression is presented. Here, the wavelet coefficients of the input image are rearranged to form the wavelet trees that are composed of the corresponding wavelet coefficients from all the subbands of the same orientation. A simple tree classifier has been proposed to group wavelet trees into two classes based on the amplitude distribution. Each class of wavelet trees is encoded using an appropriate procedure, specifically either SPIHT or VQ. Experimental results show that advantages obtained by combining the superior coding performance of VQ and efficient cross-subband prediction of SPIHT are appreciable for the compression task, especially for natural images with large portions of textures. For example, the proposed hybrid coding outperforms SPIHT by 0.38 dB in PSNR at 0.5 bpp for the Bridge image, and by 0.74 dB at 0.5 bpp for the Mandrill image.en_US
dc.language.isoen_USen_US
dc.titleWavelet tree classification and hybrid coding for image compressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1049/ip-vis:20050004en_US
dc.identifier.journalIEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSINGen_US
dc.citation.volume152en_US
dc.citation.issue6en_US
dc.citation.spage752en_US
dc.citation.epage756en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000234308000011-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000234308000011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。