Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, WCen_US
dc.contributor.authorTseng, SSen_US
dc.contributor.authorWang, CYen_US
dc.date.accessioned2014-12-08T15:18:08Z-
dc.date.available2014-12-08T15:18:08Z-
dc.date.issued2005-11-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2005.06.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/13107-
dc.description.abstractIn recent years, manufacturing processes have become more and more complex, and meeting high-yield target expectations and quickly identifying root-cause machinesets, the most likely sources of defective products, also become essential issues. In this paper, we first define the root-cause machineset identification problem of analyzing correlations between combinations of machines and the defective products. We then propose the Root-cause Machine Identifier (RMI) method using the technique of association rule mining to solve the problem efficiently and effectively. The experimental results of real datasets show that the actual root-cause machinesets are almost ranked in the top 10 by the proposed RMI method. (c) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectassociation rule miningen_US
dc.subjectdefect detectionen_US
dc.subjectinterestingness measurementen_US
dc.subjectmanufacturing defect detection problemen_US
dc.titleA novel manufacturing defect detection method using association rule mining techniquesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2005.06.004en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume29en_US
dc.citation.issue4en_US
dc.citation.spage807en_US
dc.citation.epage815en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000232757700009-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. 000232757700009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.