Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, MCen_US
dc.contributor.authorHsiung, Yen_US
dc.contributor.authorHsu, HMen_US
dc.date.accessioned2014-12-08T15:18:31Z-
dc.date.available2014-12-08T15:18:31Z-
dc.date.issued2005-09-01en_US
dc.identifier.issn0268-3768en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00170-003-2030-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/13326-
dc.description.abstractThe tool planning problem is to determine how many tools should be allocated to each tool group to meet some objectives. Recent studies aim to solve the problem for the cases of uncertain demand. Yet, most of them do not involve cycle time constraints. Cycle time, a key performance index in particular in semiconductor foundry, should not be ignored. The uncertain demand is modeled as a collection of scenarios. Each scenario, with an occurrence probability, represents the aggregate demand volume under a given product mix ratio. A genetic algorithm embedded with a queuing analysis is developed to solve the problem. Experiments indicate that the proposed solution outperforms that obtained by considering only a particular scenario.en_US
dc.language.isoen_USen_US
dc.subjectcapacity planningen_US
dc.subjectcycle timeen_US
dc.subjectdemand uncertaintyen_US
dc.subjectgenetic algorithmen_US
dc.subjecttool planningen_US
dc.titleA tool planning approach considering cycle time constraints and demand uncertaintyen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00170-003-2030-2en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGYen_US
dc.citation.volume26en_US
dc.citation.issue5-6en_US
dc.citation.spage565en_US
dc.citation.epage571en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000231605200017-
dc.citation.woscount13-
Appears in Collections:Articles


Files in This Item:

  1. 000231605200017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.