完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Tsung-Ching | en_US |
dc.contributor.author | Su, Wen-Ku | en_US |
dc.contributor.author | Shih, Pei-Yu | en_US |
dc.contributor.author | Truong, Trieu-Kien | en_US |
dc.date.accessioned | 2017-04-21T06:49:58Z | - |
dc.date.available | 2017-04-21T06:49:58Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.isbn | 978-0-7695-4763-3 | en_US |
dc.identifier.isbn | 978-1-4673-2138-9 | en_US |
dc.identifier.issn | 1949-4653 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/ICGEC.2012.13 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135436 | - |
dc.description.abstract | A fast algorithm is developed to evaluate the discrete cosine transform (DCT) when the number of data sample is a Fermat prime. It is based on the ideas of decomposing the length DCT into two circular correlations which can be implemented by a use of the number theoretic transform (NTT). This fact leads to result a reduction of computing the DCT complexity when compared with more conventional methods. In addition, this fast DCT provides a regular and simple structure based on circular correlations. Therefore, it can also be implemented by the use of a modification of Kung\'s pipelines structure. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Fermat prime number | en_US |
dc.subject | circular correlation | en_US |
dc.subject | DCT/IDCT | en_US |
dc.title | A Fast Algorithm of the Discrete Cosine Transform for the Fermat Prime-length | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/ICGEC.2012.13 | en_US |
dc.identifier.journal | 2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC) | en_US |
dc.citation.spage | 261 | en_US |
dc.citation.epage | 264 | en_US |
dc.contributor.department | 電機工程學系 | zh_TW |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.identifier.wosnumber | WOS:000319285800065 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |