完整后设资料纪录
DC 栏位语言
dc.contributor.author王泰方zh_TW
dc.contributor.author侯拓宏zh_TW
dc.contributor.authorWang, Tai-fangen_US
dc.contributor.authorHou,Tuo-Hungen_US
dc.date.accessioned2018-01-24T07:38:19Z-
dc.date.available2018-01-24T07:38:19Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070350297en_US
dc.identifier.urihttp://hdl.handle.net/11536/139761-
dc.description.abstract我们生活在一个资讯爆炸的时代,云端、移动互联网技术引发对于大型数据中心强烈的需求。无论是商用还是个人消费性电子的应用场域,非挥发性储存元件皆存在着广阔而持久的市场,用以满足人类指数增长的知识储存。也因此记忆体元件的研究在各个主要的半导体技术研发单位如火如荼的进行,各种新技术轮番登上舞台。
如今对于数据中心级的资料储存主要还是由基于磁储存的硬碟(HDD)来进行,最近几年固态硬碟(SSD)技术上的进步和大规模商用带来的价格下跌,让一些对速度需求强烈和价格相对不敏感的关键系统节点,也开始部署固态硬碟为主的存储服务器。近年来各大厂商主推的三维垂直快闪记忆体技术(3D vertical-NAND)技术又让以快闪记忆体器件为基础的非挥发性储存元件的发展进入快速增长的时代。
然而快闪式记忆体有着它固有的缺点:切换速度慢(>1μs)、操作电压大(>10V)、生命周期短(<106 cycles)、元件尺寸的微缩(scaling)难度高(>15nm)。因此,超越主流NAND 技术的下一代记忆体研究正蓬勃发展,其中电阻式随机存取记忆体(RRAM)由于其简单的结构:金属-绝缘层-金属(MIM)、切换时间快速(<10ns)、微缩能力好(<10nm)而受到很大关注,并且已经利用与3D-VNAND 相同的三维结构(3D-V-RRAM)成功演示可以操作的元件雏形。
此论文研究以原子层沉积(ALD)技术制造的HfO2/TiO¬2双层RRAM(Bilayer-RRAM)元件为基础,替换不同的上电极,找到适应不同需求的上电极材料,探讨了电极材料的物理性质对于最终元件电性的影响,并利用波形产生量测一体模组(WGFMU)设计和改进了Bilayer-RRAM 的脉冲行为量测方法。
另外,本论文也针对使用镍电极和铝掺杂技术的ALD Bilayer RRAM 持续进行了微缩,藉由元件制程参数的最佳化,Ni-ALD bilayer RRAM 成为目前利用非灯丝切换机制的元件中,厚度最薄(6nm)、操作电压小(<3V)、操作容忍度 (Endurance) 较好的元件(>107)。这令它有机会成为未来电子神经突触(synaptic)与储存级记忆体(SCM)的基础元件。 此文中也针对非灯丝切换机制元件提出了未来之发展建议。
zh_TW
dc.description.abstractAbstract
We are living in an era of information explosion. The development of cloud storage/ computing and mobile internet drives the strong demand for more powerful data center facilities. The strong demand on increasing storage ability indicates the market of nonvolatile memory is permanent and broad, no matter based on commercial or personal users’ requirements. Because the knowledge that human being creating is growing in an exponential speed. The demand of more powerful and affordable memory device stimulated the active research of new generation memory device in the world.
At present time, mass data storage in data centers still strongly relies on HDD, thanks to its high reliability and cheap price. In recent years, because of the considerable technology improvement on SSD and its significant cost reduction after successfully commercialization, some performance-sensitive critical system nodes start deploying the SSD technology. Recent advances of 3D-VNAND spearheaded by Samsung, intel, and Toshiba become another hot technology. The research on memory device is in an unprecedented progress.
However, NAND has its inherent shortcomings: long access time(>1μs), large operational voltage(>10V), poor endurance (<106 cycles), device scaling limitation(>15nm). All of these generate significant interests on the development of next-generation nonvolatile memory.
Among the numerous new-generation nonvolatile memory technologies, resistive random access memory gradually emerges as the most promising one because of its simple structure (metal-insulator-metal), fast switching speed(<10ns), excellent potential for future scaling(<10nm). Furthermore, a 3D VRRAM structure, which could be a serious contender of 3D-VNAND, has been demonstrated.
In this thesis, based on Atomic Layer Deposition(ALD) process, HfO2/TiO2 bilayer RRAM devices were successfully fabricated. The top electrode was found to be a critical knob for tuning device electrical properties. Different work functions and reactiveness of metals were considered to find a suitable top electrode material. In addition, comprehensive measurement protocols of pulse measurements were established using waveform generator/fast measurement unit(WGFMU).
Based on the Ni electrode and Al doped TiO2 film, the scalability of ALD bilayer RRAM was investigated. The process optimization improves many aspects of our ultra-thin ALD bilayer RRAM device based on non-filamentary switching mechanism, including the thinnest oxide layer (6nm), small operation voltage(<3V), good endurance (>107 cycles). This work shows the proposed device is a suitable device for analog synaptic devices or storage class memory application. Future development directions are also presented in this thesis.
en_US
dc.language.isoen_USen_US
dc.subject电阻式记忆体zh_TW
dc.subject忆阻器zh_TW
dc.subject原子层沉积zh_TW
dc.subject双层电阻式记忆体zh_TW
dc.subjectRRAMen_US
dc.subjectnon-filamentary RRAMen_US
dc.subjectBilayer RRAMen_US
dc.subjectALDen_US
dc.subjectNi electrodeen_US
dc.title原子层沉积双层电阻式记忆体之电极效应与元件微缩zh_TW
dc.titleElectrode Effect and Device Scaling of ALD Bilayer RRAMen_US
dc.typeThesisen_US
dc.contributor.department电子研究所zh_TW
显示于类别:Thesis