完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTeng, YHen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:19:41Z-
dc.date.available2014-12-08T15:19:41Z-
dc.date.issued2005-03-01en_US
dc.identifier.issn0167-8191en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.parco.2004.12.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/13985-
dc.description.abstractIn this paper, we propose a variation of honeycomb meshes. A honeycomb rectangular disk HReD(m,n) is obtained from the honeycomb rectangular mesh HReM(m,n) by adding a boundary cycle. A honeycomb rectangular disk HReD(m,n) is a 3-regular planar graph. It is obvious that the honeycomb rectangular mesh HReM(m,n) is a subgraph of HReD(m,n). We also prove that HReD(m,n) is hamiltonian. Moreover, HReD(m,n) -f remains hamiltonian for any f is an element of V(HReD(m, n)) boolean OR E(HReD(m, n)) if n >= 6. (c) 2005 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecthamiltonianen_US
dc.subjecthoneycomb meshen_US
dc.titleHoneycomb rectangular disksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.parco.2004.12.002en_US
dc.identifier.journalPARALLEL COMPUTINGen_US
dc.citation.volume31en_US
dc.citation.issue3-4en_US
dc.citation.spage371en_US
dc.citation.epage388en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000229709100007-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000229709100007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。