完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Teng, YH | en_US |
dc.contributor.author | Tan, JJM | en_US |
dc.contributor.author | Hsu, LH | en_US |
dc.date.accessioned | 2014-12-08T15:19:41Z | - |
dc.date.available | 2014-12-08T15:19:41Z | - |
dc.date.issued | 2005-03-01 | en_US |
dc.identifier.issn | 0167-8191 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.parco.2004.12.002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/13985 | - |
dc.description.abstract | In this paper, we propose a variation of honeycomb meshes. A honeycomb rectangular disk HReD(m,n) is obtained from the honeycomb rectangular mesh HReM(m,n) by adding a boundary cycle. A honeycomb rectangular disk HReD(m,n) is a 3-regular planar graph. It is obvious that the honeycomb rectangular mesh HReM(m,n) is a subgraph of HReD(m,n). We also prove that HReD(m,n) is hamiltonian. Moreover, HReD(m,n) -f remains hamiltonian for any f is an element of V(HReD(m, n)) boolean OR E(HReD(m, n)) if n >= 6. (c) 2005 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hamiltonian | en_US |
dc.subject | honeycomb mesh | en_US |
dc.title | Honeycomb rectangular disks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.parco.2004.12.002 | en_US |
dc.identifier.journal | PARALLEL COMPUTING | en_US |
dc.citation.volume | 31 | en_US |
dc.citation.issue | 3-4 | en_US |
dc.citation.spage | 371 | en_US |
dc.citation.epage | 388 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000229709100007 | - |
dc.citation.woscount | 2 | - |
顯示於類別: | 期刊論文 |