标题: 函数型方法应用于轻型车油耗与一氧化碳排放资料分析
Applying Functional Data Analysis to Fuel Consumption and CO emission in Light Duty Vehicles
作者: 林柏廷
钟易诗
Lin, Po-Ting
Chung, Yi-Shih
运输与物流管理学系
关键字: 油耗;一氧化碳排放;函数型资料分析;Fuel consumption;CO emission;Functional data analysis
公开日期: 2017
摘要: 随着人口发展与经济成长,人民生活水平上升使得车辆使用率逐渐普及,交通工具成为大部分已发展国家温室气体排放主要来源之一,减少运输工具废气排放日趋重要。此外,全球石油产能日渐减少造成油价不断攀升,对于能源使用应寻求更有效率之方式,除发展公共运输工具外,私有运具节约用油与能源使用效率亦扮演着重要的角色。因此本研究以汽油轻型车进行油耗与一氧化碳排放分析,研究结果可作为未来车辆油耗或一氧化碳排放管理及决策时的参考依据。
为探讨车辆行为与油耗或一氧化碳排放之间相互关系并找出其关键影响因子,本研究使用工研院2015 年于新竹路段测试的轻型车资料,以函数型资料观点进行主成分分析及回归分析,并参考文献传统方法分析后进行比较。函数化处理后的资料,消除了因搜集过程中外在因素产生的杂讯对分析的影响,也简化了传统方法大量的计算过程及时间。研究结果发现在函数型主成分模式中,车辆油耗与一氧化碳表现出较一致的变化趋势,更容易表达其局部变异方式以及具有更高的解释能力。而由于研究样本数不足之限制,函数型线性模式配适程度虽较传统模式低,但更容易比较不同道路特性下的校估结果,其中引擎转速与节气门开度影响油耗最为显着,尤其行经市郊区等壅塞的低速路段转往顺畅的高快速路段、进出道路交会处及交织路段,驾驶受路型转换而改变其驾驶行为,是造成油耗剧烈上升之主因,而各解释变数影响一氧化碳排放方式虽与油耗相似,但变化较为平缓且影响力不如油耗显着,未来研究可在样本数充足情况下使用更适当之基底数配适后进行讨论。
With the growth of population and economy development, people’s living standards rose thus making the use of vehicles become more and more common. Vehicles became one of the main source to cause greenhouse gas in developed
countries, therefore, it’s important to reduce the emission of greenhouse gas. Furthermore, the lack of global oil resource made oil price rise continuously, so it’s never too late to find a more efficient way for energy use. Besides public transportation, conservation of oil of privately-owned vehicles and energy-saving are
also crucial. This research analyzed the fuel consumption and CO emission of light duty vehicles. The study result could be the reference for vehicles’ fuel consumption
and CO emission management in the future.
In order to find key factors of the relationship between vehicle-behavior and fuel consumption or CO emission, this study used Industrial Technology Research Institute’s data of Hsinchu area from 2015. Using functional Principal Component Analysis and Regression Analysis, and also compared with traditional method to
analyze. We eliminated the noise from external factors, and simplified the calculating process and time after functionalizing the data. The result shows that fuel
consumption and CO emission have the similar tendency in functional PCA pattern, and it’s easier to express and explain the variation in parts. Due to insufficient
samples, functional linear model’s goodness of fit is lower than traditional model, but on the other hand, it’s easier to compare calibration results of different roads’ features. Engine-speed and throttle have significant effect on fuel consumption. Especially at those transfer routes from low-speed to high-speed sections, and interchange sections. Changing the driving behavior because of road conversion is the main cause of intense rise of fuel consumption. CO emission has similar performance with fuel consumption in explanatory variables, however, the impact is less significant. Future study could use sufficient samples to fit with appropriate basis number to discuss.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070453615
http://hdl.handle.net/11536/141879
显示于类别:Thesis