标题: 人脸影像转正应用于性别辨识与年龄预测之研究
Face Pose Frontalization apply to Gender Classification and Age Estimation
作者: 黄俊翔
王才沛
Huang, Chun-Hsiang
资讯科学与工程研究所
关键字: 人脸转正;性别辨识;年龄预测;face gender recognition;age estimation;frontal face
公开日期: 2017
摘要: 在人脸识别领域中,性别与年龄是很常见的议题,目前也已经有非常多的相关技术与理论可以参考,但大部分的实验通常会使用大头照影像这种外在环境与姿势影响较小的影像资料集,本文将利用贴近现实生活的影像进行性别与年龄预测,希望能透过前处理将外在环境与姿势的影响缩小已达到好的辨识效果。
本文将利用网路视讯串流撷取出较符合真实状态下的人脸影像,此些撷取之人脸可能会有不同的角度或遮蔽,本论文将利用转正方法将每个撷取之人脸姿势转正化至正脸,并且比较转正后与转正前之特征应用在性别辨识与年龄值或年龄族群预测之效果与影响。本文使用的特征包含像素值、梯度直方图等边界特征,并利用特征相似度搭配KNN与SVM和SVR三种方式比较转正前后特征的分类效果。最终我们可以发现在年龄部分转正步骤在各个特征下都有正面效果,而性别部分则并非全部特征有效。
In the research of human face recognition, gender and age recognition are very common issue. There are many related technology and acknowledge about gender and age recognition for reference. However, those experiment usually use bust shot or head shot as their dataset to reduce external influences of light or pose. In this paper, a face dataset which is more realistic will be used. Our dataset’s image was extracted from web stream, which containing light and pose difference problem.
In our experiment, we apply a preprocessing step to our face image before feature extraction. This step will change the pose angle of face and make it looks like front face. Next step, we extract features from frontal face and original face(without preprocessing). We will use feature similarity with KNN, SVM and SVR in these two kinds of feature to get their gender and age result. At last, we compare the frontal face result with original face result and we found that the frontal step have positive influence in age and gender recognition.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456103
http://hdl.handle.net/11536/142943
显示于类别:Thesis