完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChern, Hua-Huaien_US
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorHwang, Hsien-Kueien_US
dc.contributor.authorNeininger, Ralphen_US
dc.date.accessioned2018-08-21T05:53:48Z-
dc.date.available2018-08-21T05:53:48Z-
dc.date.issued2017-05-01en_US
dc.identifier.issn1042-9832en_US
dc.identifier.urihttp://dx.doi.org/10.1002/rsa.20659en_US
dc.identifier.urihttp://hdl.handle.net/11536/145164-
dc.description.abstractWe study the joint asymptotic behavior of the space requirement and the total path length (either summing over all root-key distances or over all root-node distances) in random m-ary search trees. The covariance turns out to exhibit a change of asymptotic behavior: it is essentially linear when 3m13, but becomes of higher order when m14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero when 3m26, but is periodically oscillating for larger m, and we also prove asymptotic independence when 3m26. Such a less anticipated phenomenon is not exceptional and our results can be extended in two directions: one for more general shape parameters, and the other for other classes of random log-trees such as fringe-balanced binary search trees and quadtrees. The methods of proof combine asymptotic transfer for the underlying recurrence relations with the contraction method. (c) 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 353-379, 2017en_US
dc.language.isoen_USen_US
dc.subjectm-ary search treeen_US
dc.subjectcorrelationen_US
dc.subjectdependenceen_US
dc.subjectrecurrence relationsen_US
dc.subjectasymptotic analysisen_US
dc.subjectlimit lawen_US
dc.subjectasymptotic transferen_US
dc.subjectcontraction methoden_US
dc.titleDependence and phase changes in random m-ary search treesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/rsa.20659en_US
dc.identifier.journalRANDOM STRUCTURES & ALGORITHMSen_US
dc.citation.volume50en_US
dc.citation.spage353en_US
dc.citation.epage379en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000397569800002en_US
顯示於類別:期刊論文