Title: | Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy |
Authors: | Amrillah, Tahta Bitla, Yugandhar Shin, Kwangwoo Yang, Tiannan Hsieh, Ying-Hui Chiou, Yu-You Liu, Heng-Jui Thi Hien Do Su, Dong Chen, Yi-Chun Jen, Shien-Uang Chen, Long-Qing Kim, Kee Hoon Juang, Jenh-Yih Chu, Ying-Hao 材料科學與工程學系 電子物理學系 Department of Materials Science and Engineering Department of Electrophysics |
Keywords: | magnetoelectric;bulk heterojunction;clamping effect;van der Waals epitaxy;flexible |
Issue Date: | 1-Jun-2017 |
Abstract: | Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate damping effect still remains a major hurdle in realizing the ultimate magneto electric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric-ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. hi this study, we investigated the magnetoelectric coupling in a self-assembled BiFeO3 (BFO)-CoFe2O4 (CFO) bulk heterojunction epitaxially grown on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate damping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO-CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm.Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance. |
URI: | http://dx.doi.org/10.1021/acsnano.7b02102 http://hdl.handle.net/11536/145747 |
ISSN: | 1936-0851 |
DOI: | 10.1021/acsnano.7b02102 |
Journal: | ACS NANO |
Volume: | 11 |
Begin Page: | 6122 |
End Page: | 6130 |
Appears in Collections: | Articles |