Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Chia-Yenen_US
dc.contributor.authorChang, Kai-Shiangen_US
dc.contributor.authorHuang, Cheng-Yaoen_US
dc.contributor.authorLin, Yun-Hsiangen_US
dc.contributor.authorPeng, Wei-Chihen_US
dc.contributor.authorYen, Hung-Weien_US
dc.contributor.authorLin, Ray-Mingen_US
dc.contributor.authorKuo, Hao-Chungen_US
dc.date.accessioned2018-08-21T05:54:26Z-
dc.date.available2018-08-21T05:54:26Z-
dc.date.issued2017-08-14en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.4999767en_US
dc.identifier.urihttp://hdl.handle.net/11536/145938-
dc.description.abstractWe investigated the origin of morphological instability in 2 mu m thick Al0.6Ga0.4N/AlN heteroepitaxy. The primary morphology was driven by the residual epitaxial strain, forming hill-like morphologies via surface diffusion. The secondary morphology was driven by the interaction between the primary morphology and dislocation clusters in the epitaxial layers. The difference in the local growth rate yields volcano-like morphologies centering on deep pits. Insertion of multi-stack superlattice transition layers between AlGaN and GaN effectively suppressed the secondary morphologies by simultaneously pre-relaxing the template and filtering treading dislocations. Published by AIP Publishing.en_US
dc.language.isoen_USen_US
dc.titleThe origin and mitigation of volcano-like morphologies in micron-thick AlGaN/AlN heteroepitaxyen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.4999767en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume111en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000407948100017en_US
Appears in Collections:Articles