標題: An Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machines
作者: Li, Cheng-Hsuan
Lin, Chin-Teng
Kuo, Bor-Chen
Ho, Hsin-Hua
電控工程研究所
Institute of Electrical and Control Engineering
關鍵字: support vector machine;SVM;kernel method;optimal kernel;normalized kernel
公開日期: 1-Jan-2010
摘要: Support vector machine (SVM) is one of the most powerful techniques for supervised classification. However, the performances of SVMs are based on choosing the proper kernel functions or proper parameters of a kernel function. It is extremely time consuming by applying the k-fold cross-validation (CV) to choose the almost best parameter. Nevertheless, the searching range and fineness of the grid method should be determined in advance. In this paper, an automatic method for selecting the parameter of the normalized kernel function is proposed. In the experimental results, it costs very little time than k-fold cross-validation for selecting the parameter by our proposed method. Moreover, the corresponding SVMs can obtain more accurate or at least equal performance than SVMs by applying k-fold cross-validation to determine the parameter.
URI: http://dx.doi.org/10.1109/TAAI.2010.46
http://hdl.handle.net/11536/146517
ISSN: 2376-6816
DOI: 10.1109/TAAI.2010.46
期刊: INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010)
起始頁: 226
結束頁: 232
Appears in Collections:Conferences Paper