完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsueh, YCen_US
dc.date.accessioned2014-12-08T15:02:51Z-
dc.date.available2014-12-08T15:02:51Z-
dc.date.issued1996-02-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://dx.doi.org/10.1016/0898-1221(95)00208-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/1467-
dc.description.abstractThe finite Radon transform was introduced by Bolker around 1976. Since then, many variations of the discrete Radon transform have been proposed. In this paper, we first propose a variation of the discrete Radon transform which is based on a binary relation. Then, we generalize this variation to weighted Radon transformation based on a weighted relation. Under such generalization, we show that discrete convolution is a special case of weighted Radon transformation. To further generalize Radon transformation to be defined on lattice-valued functions, we propose two nonlinear variations of Radon transformation. These two nonlinear variations have very close relations with morphological operations. Finally, we generalize Matheron's representation theorem to represent translation-invariant operations on functions from an abelian group to a complete lattice.en_US
dc.language.isoen_USen_US
dc.subjectdiscrete Radon transformen_US
dc.subjectdiscrete convolutionen_US
dc.subjectnonlinear Radon transformsen_US
dc.subjectGalois connectionen_US
dc.subjectmathematical morphologyen_US
dc.titleRelation-based variations of the discrete radon transformen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/0898-1221(95)00208-1en_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume31en_US
dc.citation.issue3en_US
dc.citation.spage119en_US
dc.citation.epage131en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1996TR23900008-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. A1996TR23900008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。