完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLan-Da Vanen_US
dc.contributor.authorWu, Di-Youen_US
dc.contributor.authorChen, Chien-Shiunen_US
dc.date.accessioned2014-12-08T15:20:40Z-
dc.date.available2014-12-08T15:20:40Z-
dc.date.issued2011-11-01en_US
dc.identifier.issn1045-9227en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TNN.2011.2166979en_US
dc.identifier.urihttp://hdl.handle.net/11536/14697-
dc.description.abstractThis paper presents an energy-efficient fast independent component analysis (FastICA) implementation with an early determination scheme for eight-channel electroencephalogram (EEG) signal separation. The main contributions are as follows: 1) energy-efficient FastICA using the proposed early determination scheme and the corresponding architecture; 2) cost-effective FastICA using the proposed preprocessing unit architecture with one coordinate rotation digital computer-based eigenvalue decomposition processor and the proposed one-unit architecture with the hardware reuse scheme; and 3) low-computation-time FastICA using the four parallel one-units architecture. The resulting power dissipation of the FastICA implementation for eight-channel EEG signal separation is 16.35 mW at 100 MHz at 1.0 V. Compared with the design without early determination, the proposed FastICA architecture implemented in united microelectronics corporation 90 nm 1P9M complementary metal-oxide-semiconductor process with a core area of 1.221 x 1.218 mm(2) can achieve average energy reduction by 47.63%. From the post-layout simulation results, the maximum computation time is 0.29 s.en_US
dc.language.isoen_USen_US
dc.subjectBlind source separationen_US
dc.subjectelectroencephalogramen_US
dc.subjectenergy efficiencyen_US
dc.subjectfast independent component analysisen_US
dc.subjecthardware implementationen_US
dc.titleEnergy-Efficient FastICA Implementation for Biomedical Signal Separationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TNN.2011.2166979en_US
dc.identifier.journalIEEE TRANSACTIONS ON NEURAL NETWORKSen_US
dc.citation.volume22en_US
dc.citation.issue11en_US
dc.citation.spage1809en_US
dc.citation.epage1822en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000296469500011-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000296469500011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。