標題: | Effect of interfacial layer on device performance of metal oxide thin-film transistor with a multilayer high-k gate stack |
作者: | Ruan, Dun-Bao Liu, Po-Tsun Chiu, Yu-Chuan Kuo, Po-Yi Yu, Min-Chin Kan, Kai-Zhi Chien, Ta-Chun Chen, Yi-Heng Sze, Simon M. 電子工程學系及電子研究所 光電工程學系 光電工程研究所 Department of Electronics Engineering and Institute of Electronics Department of Photonics Institute of EO Enginerring |
關鍵字: | Indium-gallium-zinc-oxide;Thin-film transistors;Multilayer high-k;Low temperature process;Interfacial layer engineering |
公開日期: | 30-Aug-2018 |
摘要: | The amorphous indium gallium zinc oxide thin-film transistors (TFTs) with a multilayer high-k gate stack are investigated in this research. In order to achieve a high quality gate insulator for plastic flexible display application, the multilayer high-k gate stacks (SiO2/TiO2/HfO2) are deposited by a low-temperature physical vapor deposition (PVD) process. On the other hands, an interfacial layer between the high-k stack and metal oxide channel is important for the device performance. The effects of interfacial layer material (SiO2 or Ga2O3) are also discussed in this report. The devices with SiO2 interfacial layer show a high on/off current ratio of similar to 7x10(7) for its low gate leakage current, a small sub-threshold swing of 0.093 V/decade and a high field-effect mobility of similar to 37.8 cm(2)/Vs for its good interface condition and low interface defeats. This research shows that the interface engineering of multilayer PVD gate stacks is necessary for oxide TFT fabrication. |
URI: | http://dx.doi.org/10.1016/j.tsf.2018.05.024 http://hdl.handle.net/11536/147978 |
ISSN: | 0040-6090 |
DOI: | 10.1016/j.tsf.2018.05.024 |
期刊: | THIN SOLID FILMS |
Volume: | 660 |
起始頁: | 578 |
結束頁: | 584 |
Appears in Collections: | Articles |