Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ku, Fang-Ju | en_US |
dc.contributor.author | Wu, Tung-Yu | en_US |
dc.contributor.author | Liao, Yen-Chin | en_US |
dc.contributor.author | Chang, Hsie-Chia | en_US |
dc.contributor.author | Wong, Wing Hung | en_US |
dc.contributor.author | Lee, Chen-Yi | en_US |
dc.date.accessioned | 2019-04-02T06:04:51Z | - |
dc.date.available | 2019-04-02T06:04:51Z | - |
dc.date.issued | 2018-01-01 | en_US |
dc.identifier.issn | 2474-2724 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/150808 | - |
dc.description.abstract | This paper presents an implementation of an energy efficient hit-plane payload design for machine learning processor. The proposed architecture facilitates high parallelism and high data bandwidth and thus improves the model learning/training time of machine learning algorithms. By assembling multiple bits as a bit-plane and enlarging query parallelism with a central compare-Hag updater, data processing parallelism can be increased. Binary sequential partition (BSP), a fast density estimation algorithm capable of dealing with high dimensional data sets, is realized. Fabricated in 90nm IP9M CMOS process, the processing rate can achieve 16.9 Gb/sec with 8 queries for data dimension D=210. The test chip integrates 64 counting cells and provides 5 modes with power consumptions of 1.86mJ/Gb per Query. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | big data analysis | en_US |
dc.subject | bit-plane | en_US |
dc.subject | hardware architecture | en_US |
dc.subject | Bayesian sequential partition | en_US |
dc.title | A 1.86mJ/Gb/Query Bit-Plane Payload Machine Learning Processor in 90nm CMOS | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2018 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT) | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000450113800042 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Conferences Paper |