Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, FCen_US
dc.contributor.authorChang, CHen_US
dc.date.accessioned2014-12-08T15:02:55Z-
dc.date.available2014-12-08T15:02:55Z-
dc.date.issued1996-01-01en_US
dc.identifier.issn1063-6536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/87.481771en_US
dc.identifier.urihttp://hdl.handle.net/11536/1523-
dc.description.abstractThe cerebellar model articulation controller (CMAC) neural network is a practical tool for improving existing nonlinear control systems. A typical simulation study is used to clearly demonstrate that the CMAC can effectively reduce tracking error, but can also destabilize a control system which is otherwise stable. Then quantitative studies are presented to search for the cause of instability in the CMAC control system. Based on these studies, methods are discussed to improve system stability, Experimental results on controlling a real world system are provided to support the findings in simulations.en_US
dc.language.isoen_USen_US
dc.titlePractical stability issues in CMAC neural network control systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/87.481771en_US
dc.identifier.journalIEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGYen_US
dc.citation.volume4en_US
dc.citation.issue1en_US
dc.citation.spage86en_US
dc.citation.epage91en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:A1996TQ67000012-
dc.citation.woscount36-
Appears in Collections:Articles


Files in This Item:

  1. A1996TQ67000012.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.