Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Wen-Jayen_US
dc.contributor.authorLo, Yu-Chienen_US
dc.contributor.authorYang, Anchenen_US
dc.contributor.authorChen, Kuanpengen_US
dc.contributor.authorChen, Nan-Yowen_US
dc.date.accessioned2019-09-02T07:46:19Z-
dc.date.available2019-09-02T07:46:19Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn1526-1492en_US
dc.identifier.urihttp://dx.doi.org/10.32604/cmes.2019.06620en_US
dc.identifier.urihttp://hdl.handle.net/11536/152704-
dc.description.abstractDifferent thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials. In this work, molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure. The stress-strain relationship, local stress, local strain, and deformation mechanism are investigated. The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior. As the strain at the elastic region, the amorphous Cu64Zr36 layer dominates the mechanical behavior, leading the fact that Young's modulus, first yielding stress, and first yielding strain are close to that of Cu64Zr36 BMG. As the strain at the plastic region, the contribution of the crystalline layer on the mechanical behavior becomes more and more significant with increasing the thickness of the crystalline layer. For the thickness ratio (amorphous/crystalline) of 4, the shear band deformation of amorphous layer dominates the mechanical properties. For the thickness ratio is 1, the glide dislocation of the crystalline layer dominates the stress-strain behavior.en_US
dc.language.isoen_USen_US
dc.subjectMolecular dynamicsen_US
dc.subjectCu64Zr36 bulk metallic glassen_US
dc.subjectCu64Zr36/Cuen_US
dc.subjectlayered structureen_US
dc.subjectshear banden_US
dc.subjectmechanical propertyen_US
dc.subjectdeformationen_US
dc.titleThickness Effect of Nanocrystalline Layer on the Deformation Mechanism of Amorphous/Crystalline Multilayered Structureen_US
dc.typeArticleen_US
dc.identifier.doi10.32604/cmes.2019.06620en_US
dc.identifier.journalCMES-COMPUTER MODELING IN ENGINEERING & SCIENCESen_US
dc.citation.volume120en_US
dc.citation.issue2en_US
dc.citation.spage293en_US
dc.citation.epage304en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000478073100005en_US
dc.citation.woscount1en_US
Appears in Collections:Articles