完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGan, Kai-Jhihen_US
dc.contributor.authorChang, Wei-Chiaoen_US
dc.contributor.authorLiu, Po-Tsunen_US
dc.contributor.authorSze, Simon M.en_US
dc.date.accessioned2019-12-13T01:10:04Z-
dc.date.available2019-12-13T01:10:04Z-
dc.date.issued2019-09-30en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.5116359en_US
dc.identifier.urihttp://hdl.handle.net/11536/153129-
dc.description.abstractThis work investigates the resistive switching mechanism in the Cu/TiW/InGaZnO/Al2O3/Pt-based memristor. By introducing the Al2O3 layer, the nanoscale diameter of the Cu filament decreased from 6.51 to 0.83 nm as the current compliance decreases from 1 mA to 50 mu A. The resistive switching memory characteristics, such as a large ratio of high-resistance state (HRS)/low-resistance state (LRS) (similar to 10(7)), stable switching cycle stability (>9 x 10(2)), and multilevel operation, are observed and apparently improved compared to the counterpart of the Cu/TiW/InGaZnO/Pt memory device. These results are attributed to the control of Cu formation/dissolution by introducing the Al2O3 nanolayer at the InGaZnO/Pt interface. The findings of this study can not only improve the performance of the amorphous InGaZnO memristor but also be promising for potential applications of next-generation flat-panel displays in wearable devices.en_US
dc.language.isoen_USen_US
dc.titleInvestigation of resistive switching in copper/InGaZnO/Al2O3-based memristoren_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.5116359en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume115en_US
dc.citation.issue14en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000489308600030en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文