Full metadata record
DC FieldValueLanguage
dc.contributor.authorChu, Ching-Yunen_US
dc.contributor.authorChen, Yuan-Puen_US
dc.contributor.authorGao, Jing-Zhien_US
dc.contributor.authorKe, Cheng-Yungen_US
dc.contributor.authorChen, Yu-Weien_US
dc.contributor.authorChang, Li-Hanen_US
dc.contributor.authorSu, Borchingen_US
dc.contributor.authorChu, Ta-Shunen_US
dc.contributor.authorWang, Yu-Jiuen_US
dc.date.accessioned2020-03-02T03:23:28Z-
dc.date.available2020-03-02T03:23:28Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn0018-9480en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TMTT.2019.2942596en_US
dc.identifier.urihttp://hdl.handle.net/11536/153740-
dc.description.abstractIn this article, a scalable hybrid phased-array system is presented through synchronization, analog complex weighting, and digital beamforming of numerous fully integrated Ka-band four-receiver (RX)/four-transmitter (TX) phased-array transceiver integrated circuits (ICs). A 1.09-GHz clock synchronizes the local oscillator (LO) and a 50-MHz clock synchronizes analog-to-digital (A/D)/digital-to-analog (D/A) converters for all array elements. Phase shifting is first accomplished in the analog domain using optimal intermediate frequency (IF)/LO complex weighting and signal summing in the 4RX/4TX IC to reduce the number of signals by a factor of four, followed by A/D sampling and digital beamforming in field-programmable gate arrays (FPGAs) and central processing units (CPUs). Phase-shifting properties, programmable gain variations, and antenna patterns of each RTX channel are measured and tabulated to calculate the optimal channel weights. The long-term phase stability is enhanced through temperature control by monitoring all ICs' temperatures in real time and adaptively adjusting the duty cycle of the TX mode of each IC to limit instantaneous temperature variations to +/- 0.5 degrees C over each calibration session. This reduces random phase errors from 13.3 degrees to 4.8 degrees in the TX mode. After each Vivaldi antenna is located on a 2-D rectangular grid, an 8 x 4 subarray module with synchronized digital output is demonstrated. With the boresight pointing along the x-axis, the eight-element dimension pointing along the y-axis, and the four-element dimension pointing along the z-axis, this subarray steers radiation patterns with the E-field polarized to the y-axis between +/- 40 degrees in both azimuth and elevation with 13.4 degrees and 26.4 degrees measured 3-dB beamwidths, respectively.en_US
dc.language.isoen_USen_US
dc.subjectAutomatic digital calibrationen_US
dc.subjectcomplementary metal-oxide-semiconductor (CMOS)en_US
dc.subjectintermediate frequency (IF)/local oscillator (LO) phase shiftingen_US
dc.subjectKa-banden_US
dc.subjectphased arrayen_US
dc.titleA Ka-Band Scalable Hybrid Phased Array Based on Four-Element ICsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TMTT.2019.2942596en_US
dc.identifier.journalIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUESen_US
dc.citation.volume68en_US
dc.citation.issue1en_US
dc.citation.spage287en_US
dc.citation.epage299en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000508433500025en_US
dc.citation.woscount0en_US
Appears in Collections:Articles