Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Wei-Yuanen_US
dc.contributor.authorKo, Chu-Lingen_US
dc.contributor.authorChen, Jr-Changen_US
dc.contributor.authorWei, Ting-Hanen_US
dc.contributor.authorHsueh, Chu-Hsuanen_US
dc.contributor.authorWu, I-Chenen_US
dc.date.accessioned2020-05-05T00:02:17Z-
dc.date.available2020-05-05T00:02:17Z-
dc.date.issued2020-05-02en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2020.02.023en_US
dc.identifier.urihttp://hdl.handle.net/11536/154088-
dc.description.abstractAn mnk-game is a kind of k-in-a-row game played on an m x nboard, where two players alternatively mark empty squares with their own colors and the first player who gets k-consecutive marks (horizontally, vertically, or diagonally) wins. In this paper, we present an AND/OR search tree algorithm specifically for proving mnk-games. We first propose three novel methods to reduce the branching factor of AND/OR search trees. We also propose a new method to find pairing strategies, which further accelerate the proof of mnk-games. The combined methods drastically speed up the proof for the 7,7,5-game, which is solved in 2.5 seconds. Moreover, this paper is the first to solve the 8,8,5-game, which is proven as a draw within 17.4 hours. (C) 2020 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectk-in-a-row gamesen_US
dc.subjectmnk-gamesen_US
dc.subjectPositional gamesen_US
dc.subjectPairing strategyen_US
dc.subjectRelevancy-zoneen_US
dc.titleOn solving the 7,7,5-game and the 8,8,5-gameen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2020.02.023en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume815en_US
dc.citation.spage79en_US
dc.citation.epage94en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000524283200007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles