Title: Hysteretic behavior of bolt-column joints under in-plane loading combinations by experimental and numerical study
Authors: Ma, H. H.
Ma, Y. Y.
Yu, Z. W.
Jiang, P.
Fan, F.
Meng, Z. P.
交大名義發表
National Chiao Tung University
Keywords: Bolt-column joint;Hysteretic behavior;Semi-rigid;Single-layer reticulated shell;In-plane bending
Issue Date: 1-Jun-2020
Abstract: The bolt-column (BC) joint has enough bending stiffness satisfying large-span single-layer reticulated shell structure well. The hysteretic behavior of BC joints under different in-plane combinations of bending moment and axial force is investigated in this study. Firstly, precise finite element models (FEM) of the BC joints, which considered the material and the geometric and contact nonlinearities, were established in ABAQUS. The failure modes, hysteretic curves, skeleton curves, and bearing capacity for assessing the joint hysteretic behavior were investigated in detail by the numerical analysis. BC joints under different combined axial force and cyclic bending loads were studied by numerical analysis to obtain the impact of the axial force, which provides necessary technical support for engineering practice. Three tests were conducted and the results verified that the FEM was effective in simulating the joint behavior by comparison with the test results. The research shows that the hysteretic capacity of BC joints under in-plane bending is weaker than that under out-of-plane bending, but the bearing capacity of former is higher. Increasing the thickness of the side and middle plates can slightly enhance the joint in-plane hysteretic capacity, which is improved with small axial compression and reduced with high axial compression and axial tension.
URI: http://dx.doi.org/10.1016/j.engstruct.2020.110349
http://hdl.handle.net/11536/154301
ISSN: 0141-0296
DOI: 10.1016/j.engstruct.2020.110349
Journal: ENGINEERING STRUCTURES
Volume: 212
Begin Page: 0
End Page: 0
Appears in Collections:Articles