標題: | Hydrogel-based zinc ion sensor on optical fiber with high resolution and application to neural cells |
作者: | Tsai, May-Jywan Cheng, Henrich Ho, Hsin-Hsien Lin, Peng-Wei Liou, Dann-Ying Fang, Teng-Ching Li, Chao-Wei Kwan, Karmeng Chen, Yen-Chi Huang, Cheng-Sheng Horng, Sheng-Fu Hung, Chen-Hsiung Zan, Hsiao-Wen Meng, Hsin-Fei 機械工程學系 物理研究所 光電工程學系 光電工程研究所 Department of Mechanical Engineering Institute of Physics Department of Photonics Institute of EO Enginerring |
關鍵字: | Zinc ion sensor;Hydrogel;Central nervous system injury;Inflammation;Neuronal cultures;Macrophage |
公開日期: | 15-八月-2020 |
摘要: | Solid-state zinc ion sensor is developed with high enough resolution and reproducibility for the potential application in brain injury monitoring. An optical diffuser is incorporated into the zinc ion sensor based on optical fiber and hydrogel doped with the fluorescent zinc ion probe molecule meso-2,6-Dichlomphenyltripyrrinone (TPN-Cl-2). The diffuser transforms the high-peak-intensity excitation light near the fiber end into a broad light with moderate local intensity to reduce the degradation of the probe molecule. Reversible detection can be reached for 1, 2, and 5 mu m (10(-6) Molar), with slopes 0.3, 0.6, and 0.8 respectively. This is the pathophysiological concentration range after brain injury. The sensor is applied to neuron-glial cultures and macrophage under the stimulation of lipopolysaccharide (LPS), KCl and oxygen/glucose deprivation (OGD) that reflect inflammation, depolarization and ischemia respectively, mimicking events after brain injury. The zinc ion level is raised to 4-5 mu m after LPS treatment, and then reduced to <3 mu m after the co-treatment with the herbal drug silymarin. The results suggest the conditions of the neural cells under stress can be monitored. |
URI: | http://dx.doi.org/10.1016/j.bios.2020.112230 http://hdl.handle.net/11536/154929 |
ISSN: | 0956-5663 |
DOI: | 10.1016/j.bios.2020.112230 |
期刊: | BIOSENSORS & BIOELECTRONICS |
Volume: | 162 |
起始頁: | 0 |
結束頁: | 0 |
顯示於類別: | 期刊論文 |