標題: | Incorporating graphene quantum dots to enhance the photoactivity of CdSe-sensitized TiO2 nanorods for solar hydrogen production |
作者: | Chang, Yung-Shan Hsieh, Ping-Yen Chang, Tso-Fu Mark Chen, Chun-Yi Sone, Masato Hsu, Yung-Jung 交大名義發表 材料科學與工程學系 National Chiao Tung University Department of Materials Science and Engineering |
公開日期: | 28-Jul-2020 |
摘要: | This work demonstrated that the incorporation of graphene quantum dots (GQDs) can greatly improve the photoelectrochemical (PEC) efficiency of CdSe-sensitized TiO2 nanorods (TiO2/CdSe), a TiO2-based visible light-responsive photoelectrode paradigm, for solar hydrogen production. For TiO2/CdSe, the accumulated holes at CdSe may induce photocorrosive oxidation to decompose CdSe, deteriorating the long-term stability of the photoelectrode and degrading the PEC performance. With the introduction of GQDs, the delocalized holes can further transfer from CdSe to the GQDs, which eases the hole accumulation at the CdSe sites, thus retarding photocorrosion. Compared to the binary TiO2/CdSe photoanode, the ternary TiO2/CdSe/GQD photoanode displays higher photocurrent and better photostability toward PEC hydrogen production. This superiority can be attributed to vectorial charge transfer and enhanced reaction kinetics provided by the introduction of GQDs. The findings from this work highlight the importance of the introduction of GQDs as a potential solution to the photocorrosion issue of chalcogenide-sensitized semiconductor photoelectrodes. |
URI: | http://dx.doi.org/10.1039/d0ta02359k http://hdl.handle.net/11536/155158 |
ISSN: | 2050-7488 |
DOI: | 10.1039/d0ta02359k |
期刊: | JOURNAL OF MATERIALS CHEMISTRY A |
Volume: | 8 |
Issue: | 28 |
起始頁: | 13971 |
結束頁: | 13979 |
Appears in Collections: | Articles |