Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Yu-Shengen_US
dc.contributor.authorSu, Pinen_US
dc.date.accessioned2014-12-08T15:21:54Z-
dc.date.available2014-12-08T15:21:54Z-
dc.date.issued2012-03-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2011.2177091en_US
dc.identifier.urihttp://hdl.handle.net/11536/15604-
dc.description.abstractThis paper provides a closed-form model of the "dark space (DS)" for Ge MOSFETs with high-k gate dielectrics. This model shows accurate dependences on barrier height, surface electric field, and quantization effective mass of the channel and gate dielectric. Our model predicts that the surface DS due to quantum confinement decreases with reverse substrate bias and increasing channel doping. Our model can be also used for devices with a steep retrograde doping profile. This physically accurate model will be crucial to the prediction of the subthreshold swing and electrostatic integrity of advanced Ge devices.en_US
dc.language.isoen_USen_US
dc.subjectClosed-form modelen_US
dc.subjectdark space (DS)en_US
dc.subjecteigenenergyen_US
dc.subjectgermaniumen_US
dc.subjectwavefunction penetration (WP)en_US
dc.titleA Closed-Form Quantum "Dark Space" Model for Predicting the Electrostatic Integrity of Germanium MOSFETs With High-k Gate Dielectricen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2011.2177091en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume59en_US
dc.citation.issue3en_US
dc.citation.spage530en_US
dc.citation.epage535en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000300580600001-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000300580600001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.