Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Cheng-Hsiungen_US
dc.contributor.authorYang, Chi-Ruen_US
dc.contributor.authorYang, Ting-Huien_US
dc.contributor.authorYang, Tzi-Shengen_US
dc.date.accessioned2014-12-08T15:22:01Z-
dc.date.available2014-12-08T15:22:01Z-
dc.date.issued2012-02-15en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2011.11.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/15635-
dc.description.abstractIn this work we investigate the existence of traveling wave solutions for a class of diffusive predator-prey type systems whose each nonlinear term can be separated as a product of suitable smooth functions satisfying some monotonic conditions. The profile equations for the above system can be reduced as a four-dimensional ODE system, and the traveling wave solutions which connect two different equilibria or the small amplitude traveling wave train solutions are equivalent to the heteroclinic orbits or small amplitude periodic solutions of the reduced system. Applying the methods of Wazewski Theorem, LaSalle's Invariance Principle and Hopf bifurcation theory, we obtain the existence results. Our results can apply to various kinds of ecological models. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectTraveling waveen_US
dc.subjectPredator-preyen_US
dc.subjectWazewski Theoremen_US
dc.subjectLaSalle's Invariance Principleen_US
dc.subjectLyapunov functionen_US
dc.subjectHopf bifurcation theoryen_US
dc.titleExistence of traveling wave solutions for diffusive predator-prey type systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2011.11.008en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume252en_US
dc.citation.issue4en_US
dc.citation.spage3040en_US
dc.citation.epage3075en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000300077400004-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000300077400004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.