標題: Electrical characteristics and annealing study of boron-doped polycrystalline diamond films
作者: Chen, SH
Chen, SL
Tsai, MH
Shyu, JJ
Chen, CF
材料科學與工程學系
Department of Materials Science and Engineering
公開日期: 1-Dec-1995
摘要: Annealing processes are an important area of fundamental research within the field of diamond electronic applications. In this study, annealing was applied to as-grown boron-doped diamond films. The current-voltage (I-V) characteristics of the Al/boron-doped diamond films were also investigated. First, the conductivity of films was examined to determine the effect of annealing on boron-doped diamond films. Experimental results indicated that the activation energy for the as-deposited diamond films (intrinsic or light boron-doped) is about 0.38 eV. After annealing, the activation energy did not change. However, the activation energy of the heavily doped films remarkably would change to 0.014 eV after annealing. Next, Fourier transform infrared spectroscopy (FTIR) and cathodoluminescence (CL) were performed to understand more clearly the correlation between the activation energy and the annealing effect on B-doped diamond films. These results revealed that for the lightly B-doped films, the boron atoms were effectively activated at the substitutional site. For the heavily doped case, boron was initially located in an inactive site (e.g., grain boundary, interstitial or clustering sites) and would diffuse into the substitutional site after 900 degrees C annealing.
URI: http://dx.doi.org/10.1149/1.2048504
http://hdl.handle.net/11536/1624
ISSN: 0013-4651
DOI: 10.1149/1.2048504
期刊: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume: 142
Issue: 12
起始頁: L223
結束頁: L225
Appears in Collections:Articles


Files in This Item:

  1. A1995TL12000001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.