完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, Chi-Tung | en_US |
dc.contributor.author | Wang, Kuo-Zhong | en_US |
dc.date.accessioned | 2014-12-08T15:23:25Z | - |
dc.date.available | 2014-12-08T15:23:25Z | - |
dc.date.issued | 2012-10-15 | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/16401 | - |
dc.description.abstract | Let omega(i) is an element of C (1 <= i <= n) and I is an element of S-n, the symmetric group of all permutations of 1, 2,...,n. Suppose A(I) is the weighted cyclic matrix [GRAPHICS] and omega(A(I)) denotes its numerical radius. We characterize those zeta is an element of S-n which satisfy omega(A(zeta)) = max(vertical bar is an element of Sn) omega(A(I)). The characterizations for unilateral and bilateral weighted (backward) shifts are also obtained. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | Numerical radius | en_US |
dc.subject | Weighted cyclic matrix | en_US |
dc.subject | Unilateral weighted shift | en_US |
dc.subject | Bilateral weighted shift | en_US |
dc.title | Maximizing numerical radii of weighted shifts under weight permutations | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | en_US |
dc.citation.volume | 394 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.epage | 592 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000305717000015 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |