Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Chuen-Tsaien_US
dc.contributor.authorHsieh, Ji-Lungen_US
dc.contributor.authorHuang, Chung-Yuanen_US
dc.date.accessioned2014-12-08T15:25:07Z-
dc.date.available2014-12-08T15:25:07Z-
dc.date.issued2006en_US
dc.identifier.isbn978-1-4244-0604-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/17497-
dc.identifier.urihttp://dx.doi.org/10.1109/ICCIAS.2006.294180en_US
dc.description.abstractThe authors describe a recommender model that uses intermediate agents to evaluate a large body of subjective data according to a set of rules and make recommendations to users. After scoring recommended items, agents adapt their own selection rules via interactive evolutionary computing to fit user tastes, even when user preferences undergo a rapid change. The model can be applied to such tasks as critiquing large numbers of music or written compositions. In this paper we use musical selections to illustrate how agents make recommendations and report the results of several experiments designed to test the model's ability to adapt to rapidly changing conditions yet still make appropriate decisions and recommendations.en_US
dc.language.isoen_USen_US
dc.titleUsing evolving agents to critique subjective music compositionsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICCIAS.2006.294180en_US
dc.identifier.journal2006 International Conference on Computational Intelligence and Security, Pts 1 and 2, Proceedingsen_US
dc.citation.spage474en_US
dc.citation.epage480en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000243679800101-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000243679800101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.