完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, KYen_US
dc.contributor.authorChao, YHen_US
dc.date.accessioned2014-12-08T15:25:43Z-
dc.date.available2014-12-08T15:25:43Z-
dc.date.issued2004en_US
dc.identifier.isbn0-7803-8742-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/18129-
dc.description.abstractWe combine neural network and syntactic pattern recognition, and propose a tree automaton system for the recognition of structural seismic patterns in a seismogram. Multilayer perceptron of the neural network is used for the identification of subpatterns, then a tree representation of the structural seismic pattern is constructed. We use three kinds of modified bottom-up structure preserved error correcting tree representation of syntactic automata to recognize the tree pattern, and propose a new top-down error correcting tree automaton to recognize non-structural preserved seismic pattern. In the experiments, the system is applied to the simulated and the real seismic bright spot patterns. The recognition result can improve seismic interpretation.en_US
dc.language.isoen_USen_US
dc.titleSeismic pattern recognition using neural network and tree automatonen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANETen_US
dc.citation.spage3080en_US
dc.citation.epage3083en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000227006900808-
顯示於類別:會議論文