標題: Seismic pattern recognition using neural network and tree automaton
作者: Huang, KY
Chao, YH
資訊工程學系
Department of Computer Science
公開日期: 2004
摘要: We combine neural network and syntactic pattern recognition, and propose a tree automaton system for the recognition of structural seismic patterns in a seismogram. Multilayer perceptron of the neural network is used for the identification of subpatterns, then a tree representation of the structural seismic pattern is constructed. We use three kinds of modified bottom-up structure preserved error correcting tree representation of syntactic automata to recognize the tree pattern, and propose a new top-down error correcting tree automaton to recognize non-structural preserved seismic pattern. In the experiments, the system is applied to the simulated and the real seismic bright spot patterns. The recognition result can improve seismic interpretation.
URI: http://hdl.handle.net/11536/18129
ISBN: 0-7803-8742-2
期刊: IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET
起始頁: 3080
結束頁: 3083
顯示於類別:會議論文