完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Wu, Pei Yuan | en_US |
| dc.date.accessioned | 2014-12-08T15:25:55Z | - |
| dc.date.available | 2014-12-08T15:25:55Z | - |
| dc.date.issued | 2011-12-01 | en_US |
| dc.identifier.issn | 0893-9659 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.aml.2011.06.010 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/18364 | - |
| dc.description.abstract | We prove that if a finite matrix A of the form [(al)(0) (B)(C)]is such that its numerical range W (A) is a circular disc centered at a, then a must be an eigenvalue of C. As consequences, we obtain, for any finite matrix A, that (a) if aW (A) contains a circular arc, then the center of this circle is an eigenvalue ofA with its geometric multiplicity strictly less than its algebraic multiplicity, and (b) if A is similar to a normal matrix, then aW (A) contains no circular arc. (C) 2011 Elsevier Ltd. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | Numerical range | en_US |
| dc.subject | Geometric multiplicity | en_US |
| dc.subject | Algebraic multiplicity | en_US |
| dc.subject | Normal matrix | en_US |
| dc.title | Numerical ranges as circular discs | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.aml.2011.06.010 | en_US |
| dc.identifier.journal | APPLIED MATHEMATICS LETTERS | en_US |
| dc.citation.volume | 24 | en_US |
| dc.citation.issue | 12 | en_US |
| dc.citation.spage | 2115 | en_US |
| dc.citation.epage | 2117 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000294886000029 | - |
| dc.citation.woscount | 5 | - |
| 顯示於類別: | 期刊論文 | |

