Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsai, Ming Cheng | en_US |
dc.date.accessioned | 2014-12-08T15:26:12Z | - |
dc.date.available | 2014-12-08T15:26:12Z | - |
dc.date.issued | 2011-11-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2011.04.028 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/18584 | - |
dc.description.abstract | Let A be an n-by-n (n >= 2) matrix of the form [0 a(1) 0 a(n-1) a(n) 0] We show that if the a(j)'s are nonzero and their moduli are periodic, then the boundary of its numerical range contains a line segment. We also prove that partial derivative W (A) contains a noncircular elliptic arc if and only if the a(j)'s are nonzero, n is even, vertical bar a(1)vertical bar = vertical bar a(3)vertical bar = ... = vertical bar a(n-1)vertical bar, vertical bar a(2)vertical bar = vertical bar a(4)vertical bar = ... = vertical bar a(n)vertical bar and vertical bar a(1)vertical bar not equal vertical bar a(2)vertical bar. Finally, we give a criterion for A to be reducible and completely characterize the numerical ranges of such matrices. (C) 2011 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | Weighted shift matrix | en_US |
dc.subject | Periodic weights | en_US |
dc.subject | Degree-n homogeneous polynomial | en_US |
dc.subject | Reducible matrix | en_US |
dc.title | Numerical ranges of weighted shift matrices with periodic weights | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2011.04.028 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 435 | en_US |
dc.citation.issue | 9 | en_US |
dc.citation.spage | 2296 | en_US |
dc.citation.epage | 2302 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000292439900017 | - |
dc.citation.woscount | 9 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.