Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Ming Chengen_US
dc.date.accessioned2014-12-08T15:26:12Z-
dc.date.available2014-12-08T15:26:12Z-
dc.date.issued2011-11-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2011.04.028en_US
dc.identifier.urihttp://hdl.handle.net/11536/18584-
dc.description.abstractLet A be an n-by-n (n >= 2) matrix of the form [0 a(1) 0 a(n-1) a(n) 0] We show that if the a(j)'s are nonzero and their moduli are periodic, then the boundary of its numerical range contains a line segment. We also prove that partial derivative W (A) contains a noncircular elliptic arc if and only if the a(j)'s are nonzero, n is even, vertical bar a(1)vertical bar = vertical bar a(3)vertical bar = ... = vertical bar a(n-1)vertical bar, vertical bar a(2)vertical bar = vertical bar a(4)vertical bar = ... = vertical bar a(n)vertical bar and vertical bar a(1)vertical bar not equal vertical bar a(2)vertical bar. Finally, we give a criterion for A to be reducible and completely characterize the numerical ranges of such matrices. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectWeighted shift matrixen_US
dc.subjectPeriodic weightsen_US
dc.subjectDegree-n homogeneous polynomialen_US
dc.subjectReducible matrixen_US
dc.titleNumerical ranges of weighted shift matrices with periodic weightsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2011.04.028en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume435en_US
dc.citation.issue9en_US
dc.citation.spage2296en_US
dc.citation.epage2302en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000292439900017-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000292439900017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.