完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Shihn-Yuarnen_US
dc.contributor.authorTseng, Tzu-Tingen_US
dc.contributor.authorKe, Hao-Renen_US
dc.contributor.authorSun, Chuen-Tsaien_US
dc.date.accessioned2014-12-08T15:26:59Z-
dc.date.available2014-12-08T15:26:59Z-
dc.date.issued2011-09-15en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2011.04.073en_US
dc.identifier.urihttp://hdl.handle.net/11536/19215-
dc.description.abstractSocial tagging is widely practiced in the Web 2.0 era. Users can annotate useful or interesting Web resources with keywords for future reference. Social tagging also facilitates sharing of Web resources. This study reviews the chronological variation of social tagging data and tracks social trends by clustering tag time series. The data corpus in this study is collected from Hemidemi.com. A tag is represented in a time series form according to its annotating Web pages. Then time series clustering is applied to group tag time series with similar patterns and trends in the same time period. Finally, the similarities between clusters in different time periods are calculated to determine which clusters have similar themes, and the trend variation of a specific tag in different time periods is also analyzed. The evaluation shows the recommendation accuracy of the proposed approach is about 75%. Besides, the case discussion also proves the proposed approach can track the social trends. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectWeb 2.0en_US
dc.subjectSocial taggingen_US
dc.subjectTime series clusteringen_US
dc.subjectEvent trackingen_US
dc.titleSocial trend tracking by time series based social tagging clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2011.04.073en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume38en_US
dc.citation.issue10en_US
dc.citation.spage12807en_US
dc.citation.epage12817en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000292169500087-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000292169500087.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。