完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Wang, Kuo-Zhong | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:27:00Z | - |
dc.date.available | 2014-12-08T15:27:00Z | - |
dc.date.issued | 2011-09-15 | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jmaa.2011.04.010 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/19226 | - |
dc.description.abstract | Let A be a unilateral (resp., bilateral) weighted shift with weights w(n), n >= 0 (resp., -infinity < n < infinity). Eckstein and Racz showed before that A has its numerical range W (A) contained in the closed unit disc if and only if there is a sequence {a(n)}(n=0)(infinity) (resp., {a(n))(n=-infinity)(infinity)) in [-1,1] such that |w(n)|(2) = (1 - a(n))(1 + a(n+1)) for all n. In terms of such a(n)'s, we obtain a necessary and sufficient condition for W (A) to be open. If the w(n)'s are periodic, we show that the a(n)'s can also be chosen to be periodic. As a result, we give an alternative proof for the openness of W (A) for an A with periodic weights, which was first proven by Stout. More generally, a conjecture of his on the openness of W (A) for A with split periodic weights is also confirmed. (C) 2011 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | Numerical radius | en_US |
dc.subject | Numerical contraction | en_US |
dc.subject | Unilateral weighted shift | en_US |
dc.subject | Bilateral weighted shift | en_US |
dc.title | Numerical ranges of weighted shifts | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2011.04.010 | en_US |
dc.identifier.journal | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | en_US |
dc.citation.volume | 381 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 897 | en_US |
dc.citation.epage | 909 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000290972700040 | - |
dc.citation.woscount | 7 | - |
顯示於類別: | 期刊論文 |