完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:27:00Z-
dc.date.available2014-12-08T15:27:00Z-
dc.date.issued2011-09-15en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jmaa.2011.04.010en_US
dc.identifier.urihttp://hdl.handle.net/11536/19226-
dc.description.abstractLet A be a unilateral (resp., bilateral) weighted shift with weights w(n), n >= 0 (resp., -infinity < n < infinity). Eckstein and Racz showed before that A has its numerical range W (A) contained in the closed unit disc if and only if there is a sequence {a(n)}(n=0)(infinity) (resp., {a(n))(n=-infinity)(infinity)) in [-1,1] such that |w(n)|(2) = (1 - a(n))(1 + a(n+1)) for all n. In terms of such a(n)'s, we obtain a necessary and sufficient condition for W (A) to be open. If the w(n)'s are periodic, we show that the a(n)'s can also be chosen to be periodic. As a result, we give an alternative proof for the openness of W (A) for an A with periodic weights, which was first proven by Stout. More generally, a conjecture of his on the openness of W (A) for A with split periodic weights is also confirmed. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectNumerical radiusen_US
dc.subjectNumerical contractionen_US
dc.subjectUnilateral weighted shiften_US
dc.subjectBilateral weighted shiften_US
dc.titleNumerical ranges of weighted shiftsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2011.04.010en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSen_US
dc.citation.volume381en_US
dc.citation.issue2en_US
dc.citation.spage897en_US
dc.citation.epage909en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000290972700040-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000290972700040.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。