Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Chih-Tienen_US
dc.contributor.authorChang, Yue-Shanen_US
dc.contributor.authorWang, Wei-Jenen_US
dc.contributor.authorYuan, Shyan-Mingen_US
dc.date.accessioned2014-12-08T15:28:24Z-
dc.date.available2014-12-08T15:28:24Z-
dc.date.issued2012en_US
dc.identifier.isbn978-0-7695-4843-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/20563-
dc.identifier.urihttp://dx.doi.org/10.1109/UIC-ATC.2012.41en_US
dc.description.abstractExecution time prediction is an important issue in cloud computing. Predicting the execution time fast and accurately not only can help users to schedule jobs smarter, but also maximize the throughput and minimize the resource consumption of cloud platform. While hybrid cloud provides methods to federate multiple cloud platforms, different cloud platforms have different resource attributes, which will increase the difficulties to predict a job's execution time. In this paper, we exploit Rough Set Theory (RST), which is a well-known prediction technique that uses the historical data, to predict the execution time of jobs. The evaluation presents that RST can utilize the accuracy of the execution time, while the decision can be made in a short period of time.en_US
dc.language.isoen_USen_US
dc.subjectExecution Time Predictionen_US
dc.subjectRough Set Theoryen_US
dc.subjectRough Setsen_US
dc.subjectHistory Based Approachen_US
dc.subjectHybrid Clouden_US
dc.subjectPublic Clouden_US
dc.subjectPrivate Clouden_US
dc.titleExecution Time Prediction Using Rough Set Theory in Hybrid Clouden_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/UIC-ATC.2012.41en_US
dc.identifier.journal2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INTELLIGENCE & COMPUTING AND 9TH INTERNATIONAL CONFERENCE ON AUTONOMIC & TRUSTED COMPUTING (UIC/ATC)en_US
dc.citation.spage729en_US
dc.citation.epage734en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000310381500109-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000310381500109.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.