標題: | A higher-dimensional Kurzweil theorem for formal Laurent series over finite fields |
作者: | Chen, Shu-Yi Fuchs, Michael 應用數學系 Department of Applied Mathematics |
關鍵字: | Formal Laurent series;Inhomogeneous Diophantine approximation;Simultaneous Diophantine approximation;Kurzweil's theorem |
公開日期: | 1-十一月-2012 |
摘要: | In a recent paper, Kim and Nakada proved an analogue of Kurzweil's theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well. (C) 2012 Elsevier Inc. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.ffa.2012.08.001 http://hdl.handle.net/11536/20664 |
ISSN: | 1071-5797 |
DOI: | 10.1016/j.ffa.2012.08.001 |
期刊: | FINITE FIELDS AND THEIR APPLICATIONS |
Volume: | 18 |
Issue: | 6 |
起始頁: | 1195 |
結束頁: | 1206 |
顯示於類別: | 期刊論文 |