Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:28:45Z-
dc.date.available2014-12-08T15:28:45Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2012.08.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/20803-
dc.description.abstractFor any n-by-n matrix A, we consider the maximum number k = k(A) for which there is a k-by-k compression of A with all its diagonal entries in the boundary partial derivative W (A) of the numerical range W (A) of A. For any such compression, we give a standard model under unitary equivalence for A. This is then applied to determine the value of k(A) for A of size 3 in terms of the shape of W (A). When A is a matrix of the form (0 W-1 ... 0 ... w(n-1) w(n) 0 ), we show that k(A) = n if and only if either vertical bar w(1)vertical bar = ... = vertical bar w(n)vertical bar or n is even and vertical bar w(1)vertical bar = vertical bar w(3)vertical bar = ... = vertical bar w(n-1)vertical bar and vertical bar w(2)vertical bar = vertical bar w(4)vertical bar = ... = lwn For such matrices A with exactly one of the wi's zero, we show that any k, 2 <= k <= n - 1, can be realized as the value of k(A), and determine exactly when the equality k(A) = n - 1 holds. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangesen_US
dc.subjectWeighted shift matrixen_US
dc.subjectCompressionen_US
dc.titleDiagonals and numerical ranges of weighted shift matricesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.08.007en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume438en_US
dc.citation.issue1en_US
dc.citation.spage514en_US
dc.citation.epage532en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000312682900040-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000312682900040.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.