Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsai, Ming Cheng | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:30:11Z | - |
dc.date.available | 2014-12-08T15:30:11Z | - |
dc.date.issued | 2011-07-15 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2011.01.025 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21615 | - |
dc.description.abstract | We show that if A is an n-by-n (n >= 3) matrix of the form (sic) then the boundary of its numerical range contains a line segment if and only if the a(j)'s are nonzero and the numerical ranges of the (n - 1)-by-(n - 1) principal submatrices of A are all equal. For n = 3, this is the case if and only if vertical bar a(1)vertical bar = vertical bar a(2)vertical bar = vertical bar a(3)vertical bar not equal 0, in which case W (A), the numerical range of A, is the equilateral triangular region with vertices the three cubic roots of aia2a3. For n = 4, the condition becomes vertical bar a(1)vertical bar = vertical bar a(3)vertical bar not equal 0 and vertical bar a(2)vertical bar = vertical bar a(4)vertical bar not equal 0, in which case W (A) is the convex hull of two (degenerate or otherwise) ellipses. (C) 2011 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | Weighted shift matrix | en_US |
dc.subject | Nilpotent matrix | en_US |
dc.title | Numerical ranges of weighted shift matrices | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2011.01.025 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 435 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 243 | en_US |
dc.citation.epage | 254 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000289335200004 | - |
dc.citation.woscount | 10 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.