完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLubk, A.en_US
dc.contributor.authorRossell, M. D.en_US
dc.contributor.authorSeidel, J.en_US
dc.contributor.authorChu, Y. H.en_US
dc.contributor.authorRamesh, R.en_US
dc.contributor.authorHyetch, M. J.en_US
dc.contributor.authorSnoeck, E.en_US
dc.date.accessioned2014-12-08T15:30:20Z-
dc.date.available2014-12-08T15:30:20Z-
dc.date.issued2013-04-01en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://dx.doi.org/10.1021/nl304229ken_US
dc.identifier.urihttp://hdl.handle.net/11536/21698-
dc.description.abstractThe performance of ferroelectric devices, for example, the ferroelectric field effect transistor, is reduced by the presence of crystal defects such as edge dislocations. For example, it is well-known that edge dislocations play a crucial role in the formation of ferroelectric dead-layers at interfaces and hence finite size effects in ferroelectric thin films. The detailed lattice structure including the relevant electromechanical coupling mechanisms in close vicinity of the edge dislocations is, however, not well-understood, which hampers device optimization. Here, we investigate edge dislocations in ferroelectric BiFeO3 by means of spherical aberration-corrected scanning transmission electron microscopy, a dedicated model-based structure analysis, and phase field simulations. Unit-cell-wise resolved strain and polarization profiles around edge dislocation reveal a wealth of material states including polymorph nanodomains and multiple domain walls characteristically pinned to the dislocation. We locally determine the piezoelectric tensor and identify piezoelectric coupling as the driving force for the observed phenomena, explaining, for example, the orientation of the domain wall with respect to the edge dislocation. Furthermore, an atomic model for the dislocation core is derived.en_US
dc.language.isoen_USen_US
dc.subjectFerroelectricityen_US
dc.subjectdislocationen_US
dc.subjectdomain wallen_US
dc.subjectfinite size effecten_US
dc.titleElectromechanical Coupling among Edge Dislocations, Domain Walls, and Nanodomains in BiFeO3 Revealed by Unit-Cell-Wise Strain and Polarization Mapsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/nl304229ken_US
dc.identifier.journalNANO LETTERSen_US
dc.citation.volume13en_US
dc.citation.issue4en_US
dc.citation.spage1410en_US
dc.citation.epage1415en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000317549300008-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000317549300008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。