Full metadata record
DC FieldValueLanguage
dc.contributor.authorHan, Ming-Fengen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.date.accessioned2014-12-08T15:30:41Z-
dc.date.available2014-12-08T15:30:41Z-
dc.date.issued2013-05-01en_US
dc.identifier.issn0950-7051en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.knosys.2013.01.023en_US
dc.identifier.urihttp://hdl.handle.net/11536/21920-
dc.description.abstractThis paper proposes a differential evolution with local information (DELI) algorithm for Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy systems (NFSs) optimisation. The DELI algorithm uses a modified mutation operation that considers a neighbourhood relationship for each individual to maintain the diversity of the population and to increase the search capability. This paper also proposes an adaptive fuzzy c-means method for determining the number of rules and for identifying suitable initial parameters for the rules. Initially, there are no rules in the NFS model; the rules are automatically generated by the fuzzy measure and the fuzzy c-means method. Until the firing strengths of all of the training patterns satisfy a pre-specified threshold, the process of rule generation is terminated. Subsequently, the DELI algorithm optimises all of the free parameters for NFSs design. To enhance the performance of the DELI algorithm, an adaptive parameter tuning based on the 1/5th rule is used for the tuning scale factor F. The 1/5th rule dynamically adjusts the tuning scale factor in each period to enhance the search capability of the DELI algorithm. Finally, the proposed NFS with DELI model (NFS-DELI) is applied to nonlinear control and prediction problems. The results of this paper demonstrate the effectiveness of the proposed NFS-DELI model. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNeuro-fuzzy systems (NFSs)en_US
dc.subjectDifferential evolution (DE)en_US
dc.subjectNeuro-fuzzy systems optimisationen_US
dc.subjectEvolutionary algorithm (EA)en_US
dc.subjectOptimisationen_US
dc.titleDifferential evolution with local information for neuro-fuzzy systems optimisationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.knosys.2013.01.023en_US
dc.identifier.journalKNOWLEDGE-BASED SYSTEMSen_US
dc.citation.volume44en_US
dc.citation.issueen_US
dc.citation.spage78en_US
dc.citation.epage89en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000318326800008-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000318326800008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.