Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Weiguoen_US
dc.contributor.authorIgarashi, Makotoen_US
dc.contributor.authorLee, Ming-Yien_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2014-12-08T15:31:11Z-
dc.date.available2014-12-08T15:31:11Z-
dc.date.issued2013-07-05en_US
dc.identifier.issn0957-4484en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0957-4484/24/26/265401en_US
dc.identifier.urihttp://hdl.handle.net/11536/22207-
dc.description.abstractA highly periodical Si nanodisk superlattice has been fabricated by our top-down process. Based on the realistic structure, a 3D simulation program using the finite element method is developed to calculate energy band structure, optical and electrical properties, as well as the intermediate band solar cell operation. Both the experiments and simulations reveal that miniband formation enhances the optical and electrical collections. Consequently, detailed electronic structure and conversion efficiency are examined to guide the optimal design of minibands. A theoretically predicted maximal efficiency of the explored Si nanodisk superlattice is 50.3%, which is promising, compared with well-known complicated Si tandem solar cells.en_US
dc.language.isoen_USen_US
dc.titleRealistic quantum design of silicon quantum dot intermediate band solar cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0957-4484/24/26/265401en_US
dc.identifier.journalNANOTECHNOLOGYen_US
dc.citation.volume24en_US
dc.citation.issue26en_US
dc.citation.epageen_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000320029100007-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000320029100007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.