完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorHsieh, Han-Enen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Weichungen_US
dc.date.accessioned2014-12-08T15:31:43Z-
dc.date.available2014-12-08T15:31:43Z-
dc.date.issued2013en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/11536/22442-
dc.identifier.urihttp://dx.doi.org/10.1137/120872486en_US
dc.description.abstractThis article focuses on the discrete double-curl operator arising in the Maxwell equation that models three-dimensional photonic crystals with face-centered cubic lattice. The discrete double-curl operator is the degenerate coefficient matrix of the generalized eigenvalue problems (GEVP) due to the Maxwell equation. We derive an eigendecomposition of the degenerate coefficient matrix and explore an explicit form of orthogonal basis for the range and null spaces of this matrix. To solve the GEVP, we apply these theoretical results to project the GEVP to a standard eigenvalue problem (SEVP), which involves only the eigenspace associated with the nonzero eigenvalues of the GEVP, and therefore the zero eigenvalues are excluded and will not degrade the computational efficiency. This projected SEVP can be solved efficiently by the inverse Lanczos method. The linear systems within the inverse Lanczos method are well-conditioned and can be solved efficiently by the conjugate gradient method without using a preconditioner. We also demonstrate how two forms of matrix-vector multiplications, which are the most costly part of the inverse Lanczos method, can be computed by fast Fourier transformation due to the eigendecomposition to significantly reduce the computation cost. Integrating all of these findings and techniques, we obtain a fast eigenvalue solver. The solver has been implemented by MATLAB and successfully solves each of a set of 5.184 million dimension eigenvalue problems within 50 to 104 minutes on a workstation with two Intel Quad-Core Xeon X5687 3.6 GHz CPUs.en_US
dc.language.isoen_USen_US
dc.subjectthe Maxwell equationen_US
dc.subjectdiscrete double-curl operatoren_US
dc.subjecteigendecompositionen_US
dc.subjectfast Fourier transformen_US
dc.subjectphotonic crystalsen_US
dc.subjectface centered cubic latticeen_US
dc.titleEIGENDECOMPOSITION OF THE DISCRETE DOUBLE-CURL OPERATOR WITH APPLICATION TO FAST EIGENSOLVER FOR THREE-DIMENSIONAL PHOTONIC CRYSTALSen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/120872486en_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume34en_US
dc.citation.issue2en_US
dc.citation.spage369en_US
dc.citation.epage391en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000321043700006-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000321043700006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。